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Trehalase Gene: Gaining an Interactome 
Insights into Type 2 Diabetes Mellitus

INTRODUCTION
T2DM is a physical condition characterised by the body’s resistance 
to INS metabolism or incapability of producing it from the pancreas. 
It has been reported that, in 2016, 8.5% of the world’s population 
over 18 years of age suffered from T2DM, compared to 4.7% in 
1980 [1,2]. The current treatment strategy solely depends on INS 
from external sources where the price is always a big issue [3]. 
Not only the treatment cost but also the economic damage due to 
the effects on the patient’s health and in productive working hours 
also need to be reassessed [4]. A number of candidate genes in 
human accounts for INS resistance; however, Insulin Resistance 
Gene (INSR) reported to play a major role in INS action and thus 
categorised as the most sensitive gene for INS metabolism [5]. 
Mutations in INSR gene have been reported to play a significant 
role in T2DM in some earlier studies [5,6]. Some of the mutations 
produce severe and rare INS resistance in humans such as Donohue 
syndrome and Rabson-Mendenhall syndrome [5,6]. SNPs analysis 
and understanding of INS and INSR pathways help researchers 
and clinicians in the development of new drugs and medicines 
against T2DM [7]. Therefore, other genes in the T2DM pathway 
could also play a similar role like INS and INSR, as a treatment of 
INS resistance.

TREH is commonly found in the brush border of the small intestine 
which hydrolyses a disaccharide, trehalose into glucose subunits. 
An elevated level of plasma TREH activity has been reported in 
diabetic patients compared to non-diabetic counterparts [8,9]. 
Mutations account for a further rise in plasma TREH activity when 
sometimes, TREH intolerable conditions arise in the small intestine 
[10]. TREH association with T2DM has been well studied and 

positive correlation with INS and INSR has also been reported 
[11,12]. However, identification of pathogenic SNPs in human 
TREH gene and the possible effects of these mutations on protein 
functions still remain unstudied. SNPs are the most common 
genetic variations present in each nucleotide base (A, T, G, and 
C) of an individual and these variations determine an individual’s 
susceptibility, drug and immune response to particular diseases. 
Analysis of non-synonymous SNPs (nsSNPs) alone accounts for 
50% of the total genetic differences linked to many diseases [13]. A 
detailed in-silico analysis of nsSNPs of a specific gene allows us to 
find out the functional differentiation between true connections and 
false positive results [14]. Therefore, there is an immense need to 
sort out the deleterious and damaging nsSNPs from the tolerated 
one and prioritising them on basis of their effects in molecular and 
functional level in different datasets as well as how TREH interact 
with other genes involved in T2DM.

Gene co-expression networking is useful to find out functional 
association and interaction of genes and for filtering the candidate 
genes involved in disease association [15]. Correlated genes 
whereas playing a regulatory role in the metabolic pathway or in a 
complex protein network [16]. Computational algorithms and online-
based tools are frequently used for mapping genes from complex 
datasets to find out co-relations in the biological pathways [17]. Even 
though the link between the overexpression of TREH and T2DM has 
extensively been studied [10], but the pattern of their interactions 
(TREH and other genes associated with T2DM) and the expression 
profiling and signalling pathways has been poorly studied.

Laboratory-based analysis of proteins, especially mutation studies 
required a considerable amount of time. The recent development in 

ASurA KhAnAm LiSA1, AL hAKim2

 

Keywords: Genetics, Insulin, Protein structure and stability, Single nucleotide polymorphism

ABSTRACT
Introduction: Trehalase (TREH), a glycoside hydrolase enzyme 
that catalyses the conversion of trehalose to glucose in sugar 
metabolism. In spite of severe health threats caused by diabetes 
worldwide, no systematic and programmed study on human 
TREH Single Nucleotide Polymorphism (SNPs) and its functional 
role in Type 2 Diabetes Mellitus (T2DM) has been performed.

Aim: This study aimed to identify pathogenic missense SNPs in 
the human TREH gene.

Materials and Methods: A series of different bioinformatic 
tools including Sorting Intolerant from Tolerant (SIFT), Polyphen, 
I-mutant, Variant Effect Predictor, Project Hope and GeneMANNIA 
were used for this study. At all stages, a p-value of 0.05 was 
considered as statistically significant.

Results: This study demonstrated 10 potential mutations out 
of 241 missense human TREH SNPs from the SNP Database 

(dbSNP) database of National Center for Biotechnology 
Information (NCBI), three of which confirmed to have damaging 
effects on protein function. Out of these three, rs535722007 had 
the most deleterious effect that altered secondary properties and 
tertiary structure of the experimental TREH protein and decreased 
the stability. Further analysis showed a strong connection among 
TREH, Insulin (INS) and other genes of carbohydrate metabolism 
associated with T2DM. Gene expression studies found the 
down-regulation of TREH in all of the experimental studies linked 
toT2DM.

Conclusion: As the probability of the disease predisposition 
increases with SNPs in primary or co-expressed gene(s), 
therefore, characterisation of TREH SNPs from human and its 
gene networking analysis can aid in better understanding of 
genetic variations and signalling pathways as well as to elucidate 
the effective diagnostic and treatment strategies.
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[24]. Data of nsSNPs from dbSNP database were prepared according 
to SIFT supported file format of the server. A SIFT score of 0.00-0.05 
was regarded as pathogenic or deleterious and above 0.05 was 
considered as non-pathogenic or tolerated.

Polyphen 2.0 (http://genetics.bwh.harvard.edu/pph2/) is another 
efficient mutation analysis predictor which combines sequence 
and structure-based attributes in which the impact of SNPs are 
calculated by Bayesian Classifier [25]. In this study, queries were 
submitted as dbSNPs IDs, and Polyphen generate SNPs results 
either as benign, possibly a damaging, or probably damaging 
(more confident prediction) based on False Positive Rate (FPR) 
threshold [13]. A score of 0.5 or less was categorised as tolerated 
mutation while above 0.5 was considered as damaging effect on 
protein configuration.

I-mutant (http://folding.biofold.org/i-mutant/i-mutant2.0.html) is a 
neural web-based Support Vector Machine (SVM), calculating the 
SNPs and their effect on protein stability. FASTA format of sequence 
from NCBI dbSNPs was used as input for I-mutant server and result 
was obtained as increasing or decreasing TREH (PDB code 2JF4) 
protein stability.

Variant Effect Predictor (https://asia.ensembl.org/info/docs/tools/
vep/index.html), the effect of variant (SNPs, insertion, deletion, 
duplication, substitution) on the structural and functional levels of 
genes, proteins and regulatory regions [26]. In this study, NCBI 
nsSNPs IDs were uploaded in VEP predictor and tools SIFT, Polyphen, 
and Condel were used to predict and calculate the structural and 
functional changes in the gene. Here, this tool was used for validation 
of SIFT and Polyphen prediction scores and accuracies.

Predicting the Effects of Deleterious SNPs on 
Protein Structure
To analyse the impact of deleterious SNPs on protein secondary 
and tertiary (3D) structure, commonly used web-based server 
was applied, Portparam (https://web.expasy.org/protparam/) and 
Project HOPE (http://www.cmbi.ru.nl/hope/method/). Protparam 
can efficiently calculate different parameters of protein like coil, 
helices, atomic and amino acid composition, Molecular Weight 
(MW), theoretical pI, instability index etc. The author inputs the 
original protein sequence of TREH from PDB (PDB code: 2JF4) 
and selected SNPs on Protparam in different tabs to analyse the 
changes in atomic and molecular level due to deleterious mutations 
found in SIFT, Polyphen, I-mutant, and VEP. Project HOPE is another 
web based tool to predict tertiary structure changes due to SNPs 
after gathering all the available data sources. Here, original structure 
of TREH from protein data bank (PDB code: 2JF4) was uploaded 
and changed the amino acid with substituted one (ARG by HIS and 
LEU by ILE) in the desired position. HOPE then determined how 
much the amino acid changes affect the protein 3D configuration 
with detailed explanation.

Gene Networking and Regulation Study
GeneMANIA (https://genemania.org/), and Cytoscape 3.4.0 were 
applied together to find out functional association among TREH, 
INS, INSR (INS receptor), and PPARG (Peroxisome Proliferator-
activated Receptor Gamma) and their role in T2DM. INS, INSR, 
and PPARG were selected because they have been reported to be 
associated with obesity and T2DM [27]. GeneMANIA can effectively 
find out functionally related genes based on the input gene from a 
large dataset, association on the basis of co-expression, pathways, 
protein domain similarity and co-localisation [28]. The author 
inputs TREH, INS, and INSR in search tool as query genes while 
GeneMANIA generated a network of these three genes on the basis 
of how they interact with each other during metabolic pathways 
and gene expression. Cytoscape (https://cytoscape.org/) is a 
commonly used tool to visualise protein-protein interaction networks 
in complex metabolic pathway. In this study, Kyoto Encyclopaedia 

bioinformatics tools enables comprehensive analysis of the structural 
and functional impact of SNPs in the protein stability [18,19]. In 
addition to mutation studies, computer aided tools frequently opted 
to find out correlations between genes and proteins in the interacting 
networks and pathways [20-22]. The aim of the present study was 
to identify pathogenic missense SNPs in the human TREH gene 
which have negative impact on protein expression systems and 
finding functional correlations between TREH, INS, INSR, and other 
previously reported genes including INS receptor substrate, pro and 
anti-inflammatory cytokines in T2DM pathways.

MATERIALS AND METHODS

Site and Length of the Study
A comprehensive in-silico analysis was conducted in the Department 
of Biotechnology and Genetic Engineering, Bangabandhu Sheikh 
Mujibur Rahman Science and Technology University, Gopalganj, 
Bangladesh. The computational analysis lasted for 90 days 
(September-November, 2019) and data analysis and interpretation 
required another 60 days (January-February, 2020). An outline of 
the study design and methods is shown in [Table/Fig-1].

[Table/Fig-1]: A flow diagram of research methods and computer aided tools 
used in present study.

Data Mining
SNPs database (dbSNPs) of National Centre for Biotechnology 
Information (NCBI) (https://www.ncbi.nlm.nih.gov/snp/) was used for 
the retrieval of all available SNPs for TREH and related protein information 
including sequences, chromosome locus, alleles, substituted bases 
etc. From the dataset, only nonsynonymous (missense) mutations from 
Homo sapiens were selected for further studies. Missense mutation 
was selected because, these SNPs reported to change amino acid 
sequence and have deleterious effect on normal protein function [23]. 
A total number of 241 nsSNPs in TREH found in the dbSNP database 
of NCBI were analysed for possible pathogenic SNPs.

Identification of Potential SNPs
A number of computer aided bioinformatics tools are now currently 
available to decide whether the mutation is neutral or pathogenic, 
damaging or tolerated. Here, four most commonly used precise tools 
were used, like Sorting Intolerant from Tolerant (SIFT), Polyphen 2.0, 
I-mutant, Variant Effect Predictor (VEP) to identify and analyse non-
synonymous SNPs in TREH of Homo sapiens.

SIFT (http://sift.jcvi.org/www/SIFT_chr_coords_submit.html) algorithm 
can precisely predict the amino acid substitution effect on protein 
stability by filtering deleterious mutations based on tolerance score 
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was downloaded for the Genes and Genomics (KEGG) KGML 
files for T2DM from NCBI Biosystems and then mapped KEGG to 
Cytoscape 3.4.0. To retain all the information for pathways (i.e., 
activation, inhibition), enzymes and associated co-factors; some 
node and edges were reconstructed by keeping major information’s 
intact. Due to large amount of information on T2DM pathway, only 
TREH, INS, and INSR interacting network were plotted and drawn 
on Cytoscape. Correlations and regulation of TREH was analysed 
using Genevestigator (V3.0) (http://genevestigator.com/gv/) [29]. 
The Affymatrix Human Genome U133 Plus 2.0 Array dataset was 
selected for Homo sapiens organism in default parameter. Then 
TREH gene was selected under gene selection tool and scatterplot 
log view was selected for experimental regulation of TREH gene. 
Only highly statistical significant values (>0.005) and fold change 
(>3.0) results were sorted in this study.

STATISTICAL ANALYSIS
At all stages, p-value of 0.05 was considered as statistically 
significant. More stringent p-value (p<0.005) and fold changes 
(≥3.0) were used to find Pearson correlation among TREH, INS and 
INSR using Genevestigator and cytoscape.

RESULTS

Selection and Analysis of SNPs
In this study, out of 2383 SNPs in human TREH, 241 coding 
nsSNPs were selected, because most of the deleterious and 
damaging mutations are reported in this region. nsSNPs are also 
likely to be disease causing and they alter amino acid position 
and thus negatively affect the protein structure and configuration. 
Among the 241 nsSNPs, three mutations were considered to be 
deleterious according to SIFT and Polyphen score while other 
seven were found to be tolerated well by the body. In all the three 
pathogenic SNPs, tolerant index scores were less than 0.03 in 
SIFT and more than 0.94 in Polyphen. The results supported 
by I-mutant revealed that protein stability decreased in all of 
these mutations. SIFT and Polyphen predictions validated using 
VEP, and also the tool applied for collecting other associated 
information’s like protein, cDNA and CDS position; codon and 
amino acids [Table/Fig-2]. Arginine substitutions by cysteine and 
histidine at position 215, and valine substitution by isoleucine at 
position 280 were the most damaging mutations predicted by all 
the tools used in this study. Other two SNPs, rs782373932 and 
rs782589785 although displayed pathogenic score in SIFT but 

demonstrated nonpathogenic (tolerated) in Polyphen and VEP 
predictions.

Effects of nsSNPs on Secondary and Tertiary 
Structure of TREH
Protparam analysis of the effects of substituted amino acid on the 
secondary structure of protein TREH are shown in [Table/Fig-3]. In 
all three cases, total number of atoms, Molecular Weight (MW), 
theoretical pI, stability index, and Grand Average of Hydropathicity 
(GRAVY) values decreased and thus changed the atomic formula 
of the protein. However, rs535722007 mutation (215, R/C) was 
the most damaging than the other two SNPs, rs541953573 and 
rs781997725. In rs535722007, a single amino acid substitution 
resulted in total number of atoms, including those responsible for 
hydrogen bonding significantly decreased (14 less H in mutated 
protein), molecular mass significantly declined (values dropped by 
106.1 Da), 24 total atoms reduced, while instability index increased 
to 50.20 from 48.87, and so as for GRAVY (hydrophilic/hydrophobic 
value). The changed properties of proteins in the Project HOPE also 
support Protparam predictions where five features were common 
for all three pathogenic SNPs: 1) A difference in charge between 
wild type and mutated amino acid; 2) Charge of the buried wild type 
residue lost by mutation; 3) Wild type and mutated residue differ in 
size; 4) Mutant residue is smaller than wild type; and 5) Mutation 
will cause an empty space in the core of the protein. Whereas, 
rs535722007 SNP in Project HOPE had two additional properties: 
1) The hydrophobicity of the wild type and mutated residue extremely 
differ, and more importantly; 2) The mutation will cause loss of 
hydrogen bonds in the core of the protein that results in incorrect 
protein folding. Therefore, it can be concluded that rs535722007 
SNP is the most damaging mutation which destabilises protein 
configuration. The wild and mutated protein structures for all three 
SNPs generated by Project HOPE are shown in [Table/Fig-4].

SnPs Formula

Total 
atom

molecular 
WT

Theo-
retical 

pl

instability 
index

GrA-
VY

2JF4 
(Normal)

C2700H4120N734O818S16 8388 60463.80 5.36 48.87 -0.653

rs535722007 C2694H4106N728O816S17 8364 60357.70 5.23 50.20 -0.627

rs541953573 C2697H4108N730O818S17 8370 60391.71 5.28 49.35 -0.637

rs781997725 C2697H4117N733O818S16 8385 60410.75 5.29 49.15 -0.650

[Table/Fig-3]: Effect of deleterious SNPs on secondary structure of TREH.

SnP
Al-
lele

Protein 
position

Amino 
acids SiFT

Poly-
phen i-mutant Status

rs200534594 C/T 242 A/T 0.11 0.015
Stability 

decreased
Tolerated

rs367709723 C/T 282 Y/C 0.15 0.011
Stability 

decreased
Tolerated

rs782111382 C/T 277 R/H 0.10 0.033
Stability 

decreased
Tolerated

rs782272013 C/T 246 E/G 0.09 0.053
Stability 

decreased
Tolerated

rs535722007 A/G 215 R/C 0.01 1.000
Stability 

decreased
Deleterious/
Pathogenic

rs541953573 C/T 215 R/H 0.00 1.000
Stability 

decreased
Deleterious/
Pathogenic

rs781997725 C/T 280 V/I 0.03 0.940
Stability 

decreased
Deleterious/
Pathogenic

rs782009103 C/T 291 S/N 0.08 0.100
Stability 

decreased
Tolerated

rs782373932 A/G 248 I/T 0.03 0.049
Stability 

decreased
Tolerated 
(Benign)

rs782589785 C/T 256 D/G 0.02 0.014
Stability 

decreased
Tolerated 
(Benign)

[Table/Fig-2]: Status of predicted nsSNPs in TREH using SIFT, Polyphen, I-mutant, 
and VEP tools.

[Table/Fig-4]: Close view of deleterious SNPs in TREH. The protein has been 
demonstrated in grey colour, the side chains of wild-type and the mutant residue are 
shown and displayed in green and red colours, respectively. (a) rs535722007 (R/C); 
(b) rs541953573 (R/H); (c) rs781997725 (V/I). The image generated in Project HOPE.

Gene Networking and Regulation Studies
GeneMANIA visualisation of the interacting network among TREH, 
INS, INSR and PPARG are shown in [Table/Fig-5]. TREH co-
expressed with INS and PPARG, and geneNOX4, where NOX4 has 
strong pathway connection with INS and INSR. Correlation study 
revealed gene from glucose metabolism pathway like glycosidase, 
aldolase, phospholipase etc. are the closest neighbour of TREH 
[Table/Fig-6]. Analysis of KEGG T2DM pathway on Cytoscape also 
showed a connection with INS resistance to trehalose, substrate 
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where trehalose works. TREH works either through Calcium 
dependent PKC pathway or DNA mediated PDX-1/MAFA pathway 
to produce T2DM [Table/Fig-7]. Both pathways impaired normal 
INS secretion and produced transient hyperglycaemia and then 
T2DM. INS and INSR may also associated with T2DM through 
Ca2+ mediated PKC and apoptosis, by the first pathway of TREH, 
involved in INS resistance. In this study, gene expression revealed 
down-regulated expression of TREH for most of the human 
diseases that are linked to INS and INSR, especially in kidney 
diseases and obesity [Table/Fig-8].

rs117619140 and rs558907) with high TREH activity were 
found to be associated with T2DM [10]. Research also found 
deleterious SNPs results in destabilisation of INSR associated 
with impaired INS secretion from pancreas [4]. Numerous 
laboratory studies have been conducted to find out the 
relationship of plasma TREH level and T2DM as well as potential 
genes those play functional role in impaired glucose metabolism 
pathways [30,31]. However, no comprehensive in-silico analysis 
yet has been done, addressing the impact of deleterious SNPs 
on functional activity of TREH and how this gene involve in INS 
resistance. Hence the authors used bioinformatic tools and 
sequence databases to predict and classify the tolerant and 
damaging nsSNPs in human TREH and its functional association 
with INS and INSR.

In the present study, a combination of both sequence and 
structure based methods for SNPs study were applied. The 
sequence based studies are only applicable for proteins with 
unknown 3D structure while studies on tertiary configurations 
give an overview of changes inside a molecule [32]. In this 
study, SIFT, Polyphen-2, I-mutant, and VEP sequence mediated 
tools produced negligible variation of score to classify the 
SNPs from one group to another (i.e., tolerated to damaging): 
a prediction always anticipated in case of in-silico study of 
SNPs [33]. Secondary structure analysis of deleterious TREH 
SNPs; rs535722007, rs535722007, and rs541953573 revealed 
R215C as the most destructive mutation that resulted in abrupt 
atomic and molecular changes in experimental TREH protein. 
Substitution of arginine by cysteine cause rapid fall in atom and 
hydrogen molecule, and sharp increase in protein instability 
index. Hydrogen bonds involve in correct protein folding, rigidity 
of the structural assembly, molecular recognition and stabilise 
intermolecular interaction [34]. The 3D structure investigation 
in rs535722007 SNP also reflects all the previous calculations 
of damaging effects. Predictions found R215C SNP in TREH 
cause loss of hydrogen bonds triggering the instability of protein. 
Protein stability although can be improved in recommended 
storage condition and laboratory settings [35]. However, some 
critical amino acids are crucial for stability, and thus, changes in 
those residues may result in unstable proteins more vulnerable 
to degradation [36]. Arginine (R) is one of the major amino 
acid that stabilise protein from aggregation, especially during 
protein refolding [37]. Several laboratory research studies have 
been conducted for increasing the thermal stability of protein 
by replacing other amino acids by arginine [38,39]. Hence, 
substitution of arginine surely affects diverse protein properties 
including stability and function.

Networking or clustering of genes is very crucial in understanding 
the genetic association and molecular mechanism of a disease. 
The study of gene-gene networking in many cases is likely to 
be useful to uncover the significant association between other 
functionally related genes and their subnetworks in the pathway of 
a particular disease [20,40]. A strong relationship exists between 

[Table/Fig-5]: Predicted, co-expression and pathway interaction between TREH, 
INS, INSR, and PPARG. Yellow line showed predicted links, purple represents co-
expression, and sky blue denotes pathway connection between genes.

[Table/Fig-6]: Most correlated gene of human TREH. Black circle at middle is the 
TREH gene and the correlation values presents as Pearson’s coefficient. The more 
adjacent to TREH shell means the higher relationship between genes.

[Table/Fig-7]: Cytoscape mapping of KEGG pathway for T2DM showing relationship 
between TREH, INS, and INSR.

[Table/Fig-8]: Regulation of human TREH gene expression in eight  perturbation 
dataset. Experimental researches showed that except one, TREH down-
 regulated in other seven studies, all of which linked with kidney diseases, 
pancreatic cancer and obesity. The image is generated in conditional search tool 
from Genevestigator.

DISCUSSION
TREH is a disaccharide found in human tissue and plasma 
which works on trehalose in carbohydrate metabolic pathways. 
Earlier experiment revealed statistically significant association 
between TREH and diabetes where three SNPs (rs2276064, 
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a pair of genes with a similar expression pattern, because they 
are controlled by same transcriptional factors, regulators and 
more importantly they play same functions in a pathway or 
a protein complex [41]. In this study, it was found that TREH, 
INS, and PPARG are co-expressed and thus perform same 
functional role in T2DM pathway. Like TREH, the overexpression 
of PPARG in T2DM progression has already been revealed [27]. 
Present study also found a strong link between many of the co-
related genes of TREH associated with T2DM. Overexpression 
of apoB-100 is associated with T2DM, where apoB-100 was 
found to trigger coronary artery calcification during T2DM, and 
thus reported that measuring the level of apoB-100 is useful in 
the diagnosis of cardiovascular risk in T2DM [42,43]. A genome 
wide association studies identified potential SNPs variants for 
diabetes and cataract located in Glucocerebrosidase-3 (GBA3) 
and PPAR [44]. The relationship is more supported by KEGG 
pathway analysis for T2DM, where TREH and INS, both have 
similar effect on INS secretion but in a different pathway[Table/
Fig-7], where INS activate INSR. In addition to that, present study 
on experimental gene regulation (perturbation) of TREH in Homo 
sapiens found down-regulation of TREH in all cases of obesity 
and kidney diseases [Table/Fig-8]; alike research outcomes for 
experimental therapy against T2DM with INS receptors [45,46]. 
Therefore, a functional association exist between TREH, INS, and 
INSR during T2DM progression in humans.

Overall findings suggest that TREH has crucial role in INS 
resistance pathway and mutations in TREH gene can produce 
severe INS resistance in humans. However, further laboratory 
trial is required to analyse the effects of deleterious SNPs in 
mouse model.

Limitation(s)
Present study deals with a limited number of samples from NCBI 
dbSNPs database. The findings could be more interesting with 
combinations of other databases like PBD, UniPortKB and genome-
wide screening of SNPs.

CONCLUSION(S)
In a nutshell, the study effectively used computational biology 
tools in finding and filtering the most damaging SNPs in TREH. In 
addition, networking bioinformatics discovered that, TREH and INS 
both have many correlated genes; co-expressed and are down-
regulated in experimental therapy for T2DM, TREH, INS, and INSR, 
differentially expressed but play similar functions in T2DM pathway. 
Further genome wide association studies and laboratory trials with 
mouse model are required for in depth analysis of deleterious SNPs 
in TREH gene.
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